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Abstract
For a three-qubit Heisenberg model in a uniform magnetic field, the pairwise
thermal entanglement of any two sites is identical due to the exchange symmetry
of sites. In this paper we consider the effect of a non-uniform magnetic field
on the Heisenberg model, modelling a magnetic impurity on one site. Since
pairwise entanglement is calculated by tracing out one of the three sites, the
entanglement clearly depends on which site the impurity is located. When the
impurity is located on the site which is traced out, that is, when it acts as an
external field of the pair, the entanglement can be enhanced to the maximal
value 1; while when the field acts on a site of the pair the corresponding
concurrence can only be increased from 1/3 to 2/3.

PACS numbers: 03.65.Ud, 03.67.−a, 75.10.−b, 75.30.Hx, 75.50.−y

1. Introduction

There is currently an ongoing effort to study entanglement in multipartite systems, since
such entangled states may provide a valuable resource in quantum information processing
[1]. Recently entanglements in quantum operations [2–4] and in indistinguishable fermionic
and bosonic systems [5–7] have been considered. Entanglement in two-qubit states has been
well studied in the literature. Various kinds of three-qubit entangled states have also been
studied [8–10], which have been shown to possess advantages over two-qubit states in quantum
teleportation [11], dense coding [12] and quantum cloning [13].

One interesting and natural type of entanglement, thermal entanglement, was introduced
and studied in the context of the Heisenberg XXX [14], XX [15], and XXZ [16] models as
well as the Ising model in a magnetic field [17]. The Heisenberg interaction has been used
to simulate a quantum computer [18], and can also be realized in quantum dots [18], nuclear
spins [19], electronic spins [20] and optical lattices [21]. By suitable coding, the Heisenberg
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interaction can be used for quantum computation [22]. Entanglement in the ground state of
the Heisenberg model has been discussed previously [23]. In an earlier note [24] we presented
an analytical study of pairwise entanglement in the three-qubit Heisenberg model in a uniform
magnetic field and found that the magnetic field can greatly enhance pairwise entanglement.
Due to exchange symmetry in this cyclic model the entanglement of any two sites is identical.

In this paper we consider the effect of a magnetic impurity on entanglement in the
Heisenberg model. We find unsurprisingly that the effect of such an inhomogeneous magnetic
field on the entanglement depends on which site the impurity is located, although in a non-
intuitive way. When the field may be considered as an external field of the pair, that is, when it
is located on the site which is traced over, then it can enhance the entanglement to its maximal
value, as measured by the concurrence. When the field acts on a site of the pair the concurrence
can be increased from 1/3 to 2/3, but not to its maximal value 1.

2. XX Heisenberg model with magnetic impurity

We consider the three-qubit XX Heisenberg model in a magnetic field acting on the third site
only. The Hamiltonian is [25]

H = J

2

3∑
i=1

(
σx

i σ x
i+1 + σ

y

i σ
y

i+1

)
+ BJσz

3 (1)

where we use BJ rather than B to denote the magnetic field. The Hamiltonian (1) has eight
distinct eigenvalues when B �= 0

E0 = −JB E1 = J

2
(1 + B−)

E2 = −J (1 + B) E3 = −J (1 − B)
(2)

E4 = J

2
(1 + B+) E5 = J

2
(1 − B−)

E6 = J

2
(1 − B+) E7 = JB

where B± ≡ (4B2 ± 4B + 9)1/2. When B = 0, the energy levels are degenerate

E1 = E7 = 0 E1 = E3 = E4 = 2J E2 = E5 = E6 = −J. (3)

In the antiferromagnetic case (J > 0), the ground state is E2, while in the ferromagnetic
case (J < 0), the ground state is E4.

The corresponding non-degenerate, orthogonal eigenstates are

|φ0〉 = |000〉
|φ1〉 = N 1 (|100〉 + |010〉 + a1|001〉)
|φ2〉 = 2−1/2 (|010〉 − |100〉)
|φ3〉 = 2−1/2 (|101〉 − |011〉)

(4)|φ4〉 = N4 (a4|110〉 + |101〉 + |011〉)
|φ5〉 = N5 (|100〉 + |010〉 + a5|001〉)
|φ6〉 = N6 (a6|110〉 + |101〉 + |011〉)
|φ7〉 = |111〉

where
a1 = − 1

2 + 1
2B− + B a5 = − 1

2 − 1
2B− + B

(5)
a4 = − 1

2 + 1
2B+ − B a6 = − 1

2 − 1
2B+ − B

and Ni = (
2 + a2

i

)−1/2
(i = 1, 4, 5, 6) are normalization constants.
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It is interesting to note that the eigenvalues transform under B ↔ −B by

E0 ↔ E7 E1 ↔ E4 E2 ↔ E3 E5 ↔ E6 (6)

and so the ai transform by a1 ↔ a4, a5 ↔ a6. This leads to invariance of the entanglement
under B ↔ −B.

The density operator ρ(T ) at temperature T can be written as

ρ(T ) = 1

Z

7∑
i=0

e−βEi |φi〉〈φi | (7)

where β = 1/kT and Z is the partition function

Z = tr(e−βH ) =
7∑

i=0

e−βEi (8)

= 2(1 + eJβ) cosh(JβB) + 2 e−Jβ/2
[
cosh

(
1
2JβB+

)
+ cosh

(
1
2JβB−

)]
. (9)

3. Concurrence of pairwise entanglement

The easiest way to calculate the entanglement is by means of the concurrence C [26] between
a pair of qubits, which is defined as

C = max {λ1 − λ2 − λ3 − λ4, 0} (10)

where the quantities λi are the square roots of the eigenvalues of the operator

� = ρ
(
σ

y

1 ⊗ σ
y

2

)
ρ∗ (

σ
y

1 ⊗ σ
y

2

)
(11)

in descending order; ρ is the density operator of the pair and it can be either pure or mixed.
The entanglement of formation is a monotonic function of the concurrence C, varying between
a minimum of zero for C = 0, and a maximum of 1 for C = 1.

We now derive the concurrence for any pair of sites in our model. Due to symmetry
under the exchange of sites 1 and 2, the entanglement between sites 1 and 3 is the same as that
between sites 2 and 3, and so we need only consider entanglement between sites 1 and 3, and
between sites 1 and 2.

Taking the trace over the second (third) site, we can obtain the reduced density operator
ρ13 (ρ12) of the sites 1 and 3 (1 and 2). Both ρ12 and ρ13 take the following form:

ρ = 1

Z




u

w1 y

y w2

v


 . (12)

Here, for ρ12, the nonzero matrix elements are given by

y = N 2
1 e−βE1 + N 2

4 e−βE4 + N 2
5 e−βE5 + N 2

6 e−βE6 − 1
2 e−βE2 − 1

2 e−βE3

w1 = w2 = N 2
1 e−βE1 + N 2

4 e−βE4 + N 2
5 e−βE5 + N 2

6 e−βE6 + 1
2 e−βE2 + 1

2 e−βE3

(13)
u = e−βE0 + a2

1N 2
1 e−βE1 + a2

5N 2
5 e−βE5

v = e−βE7 + a2
4N 2

4 e−βE4 + a2
6N 2

6 e−βE6 .
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Figure 1. Concurrence C12 against τ for different magnetic fields B = 0, 1, 10.

while for the ρ13 case, we have

y = a1N 2
1 e−βE1 + a4N 2

4 e−βE4 + a5N 2
5 e−βE5 + a6N 2

6 e−βE6

w1 = a2
1N 2

1 e−βE1 + 1
2 e−βE3 + N 2

4 e−βE4 + a2
5N 2

5 e−βE5 + N 2
6 e−βE6

w2 = N 2
1 e−βE1 + 1

2 e−βE2 + a2
4N 2

4 e−βE4 + N 2
5 e−βE5 + a2

6N 2
6 e−βE6 (14)

u = e−βE0 + N 2
1 e−βE1 + 1

2 e−βE2 + N 2
5 e−βE5

v = e−βE7 + 1
2 e−βE3 + N 2

4 e−βE4 + N 2
6 e−βE6 .

The concurrence has the form

C = 2

Z
max{|y| − √

uv, 0}. (15)

The system is entangled when C > 0, and maximally entangled when C = 1. The exchange
interaction constantJ and the temperature T always appear in the form J/kT in the concurrence
and thus we can define the scaled temperature τ ≡ kT /|J | � 0. The concurrence is a function
of τ and B.

From equations (6) it is easy to see that y → y and u ↔ v when B → −B. This means
that the concurrence is invariant under B ↔ −B;

C(τ, B) = C(τ,−B). (16)

We therefore only consider the case B � 0 case hereafter.

4. Discussion and results

4.1. C12

We first consider the entanglement between sites 1 and 2. In figures 1 and 2 we give plots
of the concurrence of ρ12 against τ and B. We know that the entanglement appears only in
the antiferromagnetic case (0 < τ � 1.27) when B = 0 [24] (also see figure 1). From
figures 1 and 2 we see that, when the magnetic impurity is located at the third site, both the
antiferromagnetic and ferromagnetic cases are entangled in the range 0 < τ � τ0, where τ0

depends on B.
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Figure 2. Concurrence C12 against B at different temperatures τ = 0.1, 0.5 and 1.

Figure 1 also suggests that the concurrence C12 goes to 1, namely, the sites 1 and 2 reach
maximal entanglement, when τ → 0 for large enough B, in both the antiferromagnetic and
ferromagnetic cases. This fact can be shown analytically as follows.

Consider first the antiferromagnetic case (J > 0). In this case E2 is the ground state; that
is, E2 − Ei < 0 for all i �= 2 and thus e−βE2 � e−βEi for i �= 2 in the limit τ → 0. Note that
all Ni and ai are finite. Then we have

y → 1

2
e−βE2 Z → e−βE2

u

Z
→ 0

v

Z
→ 0 (17)

namely, C12 → 1 when τ → 0.
For the ferromagnetic case (J < 0), one can check that E4 − Ei < 0 for all i �= 4 and

e−βE4 � e−βEi (i �= 4) in the limit τ → 0. Then we have

y → N 2
4 e−βE4 Z → e−βE4

u

Z
→ 0

v

Z
→ a2

4N 2
4 (18)

namely,

C12 → 2N 2
4 = 2

2 + a2
4

. (19)

when τ → 0. In the limit B → ∞, a4 → 0 and therefore C12 → 1. In the limit B → +0, but
B � τ , C12 → 2/3.

It is interesting to note that, when B = 0, C12 → 1/3 in the limit τ → 0 [24]. In this case
the ground state is three-fold degenerate and the approximation we used above is not valid.
This again indicates the role of degeneracy in the entanglement.

4.2. C13

We consider the entanglement between sites 1 and 3. From figures 3 and 4 we see that:

1. In contrast to the 1–2 case, the concurrence increases to a maximum with increasing B
and then decreases. The lower the τ , the smaller the B at which the concurrence reaches
its maximum value.

2. For small B, entanglement occurs only in the ferromagnetic case (J < 0), while for
large enough B (e.g. B = 10), entanglement occurs in both the antiferromagnetic and
ferromagnetic cases, but it is very weak.
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Figure 3. Concurrence C13 against τ for different magnetic fields B = 0, 1, 10. For the
antiferromagnetic case (dotted line) with B = 10, entanglement occurs although it is very weak.
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Figure 4. Concurrence C13 against B at different temperatures. For the antiferromagnetic case
(dotted line), τ = 2.

Figure 4 suggests that the maximal entanglement occurs in the ferromagnetic case when
τ → 0 and B is also much smaller than 1. In this case, E1 is very close to the ground state E4

and exp(−βE4) and exp(−βE1) are much larger than others. We can also check that

e−βE4

e−βE1
∼ exp

(
2

3

B

τ

)
� 1 (20)

and that

N1 ∼ N4 ∼ 1
3 a1 ∼ a4 ∼ 1. (21)

The concurrence is then given approximately by

C13 ∼ 2

3

[
1 − exp

(
1
3

B
τ

)
1 + exp

(
2
3

B
τ

)
]

(22)
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from which we conclude that the maximal concurrence is 2/3 when B is much larger than τ

and much smaller than 1.
In summary, we list our results in the following table.

Maximal concurrence Entanglement ranges

B = 0 1/3 Antiferromagnetic case only
12 1, when |τ | → 0 and In both ferromagnetic and antiferromagnetic

B is large enough cases
13 2/3 When B is small, only the ferromagnetic case is

for the antiferromagnetic entangled. When B is large enough, both
case and τ � B � 1 the antiferromagnetic and ferromagnetic cases

are entangled, but the entanglement is very weak

5. Conclusion

In this paper we considered the effect of a non-uniform magnetic field on the Heisenberg XX
model, modelling a magnetic impurity on only one site. In contrast to the uniform magnetic
field case [24] where the pairwise thermal entanglement of any two sites is identical due to
the exchange symmetry of sites, the entanglement due to a non-uniform magnetic field clearly
depends on which site the impurity is located. When the impurity is located at the site which is
traced out, that is, when it acts as an external field of the pair, the concurrence corresponding
to the entanglement can be enhanced to the maximal value 1 from 1/3; while when the field
acts on a site of the pair the concurrence can only be increased from 1/3 to 2/3. Maximal
entanglement is achieved when the temperature tends to zero.

In [24], the entanglement was related to the degeneracy of the system. In the present
model, the magnetic field removes all the degeneracy of the energy levels present when B = 0
and the entanglement is thus greatly enhanced.
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